
MidiFire	Manual Version	2.0,	October	2019	
©	1999-2019	Audeonic	Apps

MidiFire	-	powerful,	extendable	modular	MIDI	processing	environment	for	iOS	and	macOS.

Quick	Start
Want	to	get	going	fast?	Here	are	the	basics:

Press	the	'+'	button	on	top	left	to	expose	the	scrollable	block	menu.

Touch	MIDI	inputs,	outputs	and	modules	to	drop	them	on	to	the	canvas.

Arrange	the	blocks	however	you	like	by	touching	and	dragging	them.	Use	two-fingers	to
scroll/pinch	zoom	to	adjust	and	pan	the	canvas.

Connect	up	the	blocks	by	dragging	a	line	between	the	arrowed	connection	points.

Configure	each	module's	parameters	by	touching	the	'cog'	icon	on	each	block.

Tip	-	direct	links	to: 	Scenes,	Module	Summary,	Stream	Byter,	Getting	Help

1.	Organising	Blocks top

In	MidiFire,	a	'block'	is	a	rectangular	object	on	the	canvas	that	represents	a	MIDI	source	(input	to
MidiFire),	MIDI	destination	(output	from	MidiFire)	or	a	processing	module.	Blocks	are	added	to	the
canvas	via	the	'Block	Menu'.

The	Block	Menu	(+)
The	Block	Menu	is	expanded	by	touching/clicking	on	the	circular	'+'	button	at	the	top	left	of	the
canvas.

	
Block	Menu

You	add	blocks	to	the	canvas	by	touching	their	entry	in	the	Block	Menu.	Scroll	the	Block	Menu	to
access	all	the	available	block	types.	Each	newly	added	block	will	be	added	to	the	canvas	to	the	right
of	the	Block	Menu	and	will	briefly	flash	in	a	coloured	fashion	to	alert	you	to	its	existence.
Tip	-	you	can	touch	anywhere	on	the	canvas	or	the	top	left	'-'	to	collapse	the	Block	Menu.

Arranging	Blocks
Once	you	have	'dropped'	your	blocks,	you	can	now	arrange	them	however	you	like.	Simply	touch
hold	(anywhere	in	the	block	except	on	the	block's	buttons/arrow	connectors)	and	drag	the	block	into
position.

Managing	Blocks
Each	block	has	a	number	of	visible	widgets	used	for	managing	the	block:

	
Block

Connecting	Blocks
In	order	for	MIDI	data	to	move	from	block	to	block,	they	need	to	be	connected.	Typically	you	would
connect	MIDI	source	blocks	into	modules	and	then	on	to	MIDI	output	blocks	to	create	a	flow	of	MIDI
in	and	out	of	the	MidiFire	application.
There	are	two	ways	to	interconnect	blocks:

Simple	drag/connect
To	connect	one	block	to	another,	drag	your	finger/mouse	from	the	input	or	output	connector	of
the	block	to	a	corresponding	output	or	input	connector	on	another	block.

Multiple	touch/connect
This	is	the	'MidiBridge'	method,	where	you	touch	any	input	or	output	connector	to	'select'	it	(it
will	start	flashing	yellow).	All	other	blocks'	corresponding	output	or	input	connectors	will	change
to	a	cyan	colour	to	indicate	they	can	be	connected	to	the	selected	block.	Simply	touch	each
cyan	connector	in	turn	to	connect	to	the	selected.	Finally,	touch	the	flashing	connector	again	to
deselect.

When	blocks	are	connected	together,	a	curved	green	line	will	be	visible	between	their	connectors:

	
Connected	Blocks

Tip	-	to	remove	a	connection	just	'remake'	the	connection	on	already	connected	blocks.

Configuring	Blocks
Modules	can	be	configured	by	pressing	the	configure	block	'cog'	button	on	the	block.	This	will	bring
up	a	moveable	panel	in	which	you	can	set	the	name	of	the	block	to	suit.	Each	module	has	a	different
set	of	configurable	parameters	and	these	are	described	in	the	relevant	module	sections	further	on	in
this	manual.

	
Set	Module	Name

The	Module	Settings	panel	is	dismissed	using	the	'X'	button	at	top	left	of	the	panel	or	by	touching
elsewhere	on	the	canvas	to	dismiss.

Bypassing	Blocks
The	bypass	'power'	button	bypasses	a	module.	This	means	all	MIDI	data	passing	through	is	not
altered.	A	bypassed	module	is	indicated	by	a	red	coloured	bypass	button	and	the	block	itself
becomes	more	transparent:

	
Bypassed	Block

To	re-activate	a	bypassed	module,	just	touch	the	bypass	button	again.

Removing	Blocks

To	remove	a	block	from	the	canvas	use	the	'X'	remove	button.	You	will	be	prompted	to	confirm
removal	before	the	block	is	removed.	All	connections	to	the	removed	block	are	cleared	also.

Event	Visualisation
As	MIDI	data	is	passed	through	the	blocks,	they	will	flash	briefly	or	in	some	cases	take	on	a	solid
background	colour.	The	meanings	of	each	of	these	are	as	follows:

Green	flash	-	MIDI	event	was	accepted	and	processed	by	the	module

Orange	flash	-	MIDI	event	was	received	but	blocked	by	the	module

Red	flash	-	an	error	was	detected	in	the	module

Cyan	solid	-	(input	ports	only),	the	port	is	currently	marked	as	held	over.	See	the	section	on
holdover	mode.

Yellow	solid	-	(dynamic	clock	and	output	ports	only),	the	module	is	sending	a	clock	signal.

You	can	turn	off	the	flashing	behaviour	via	the	'Setup'	panel	covered	later.

2.	Navigating	the	Canvas top

The	canvas	is	the	area	of	the	screen	in	which	you	place	blocks	but	it	has	some	more	features:

Pan,	Zoom	and	Scroll
The	canvas	can	be	panned/scrolled	by	dragging	your	two	fingers	on	a	touch	device	or	with	a	mouse
or	trackpad	on	a	desktop	computer.	Use	two	fingers	anywhere	on	the	canvas	background	to	pan
up/down	and	left/right.	If	using	a	scroll	mouse,	the	canvas	can	be	scrolled	up/down	with	a	scroll
wheel,	or	left/right	if	your	mouse	scroll	wheel	allows	that.	A	trackpad	can	also	be	used	to	pan	the
canvas.
To	zoom	the	canvas	in/out	you	can	use	a	two	finger	pinch-zoom	gesture	on	a	touch	device	or
trackpad.	For	desktop	computers	without	a	trackpad,	you	can	use	the	two	zoom	in/out	buttons	at	the
bottom	right	or	the	menu	zoom	command.
To	clear	the	canvas,	use	the	button	at	bottom	right	(blank	square	icon).	Use	the	zoom	to	fit	button
next	to	it	(square+arrows	icon)	to	zoom	the	canvas	to	fit	all	modules	on	the	screen	automatically.

The	Button	Bar
At	the	top	right	of	the	canvas	is	a	status	indicator	with	a	set	of	button	controls	beneath.	(Note:	Scenes
and	Setup	are	covered	in	their	own	separate	sections	below)

	
Button	Bar

Status	Indicator/Activity	Log
The	status	indicator	shows	the	last	action	performed	by	the	user	in	the	application.	The	colour	of	the
text	in	the	label	will	be:

Green	-	Positive	things

Yellow	-	Less	positive	things

Red	-	Errors

Touching	the	status	indicator	will	open	up	the	Activity	Log	panel	which	shows	all	actions	performed
in	the	app	since	it	was	started	along	with	a	timestamp.	When	blocks	are	added	to	the	canvas,	the
name	of	the	block	is	shown	prefixed	by	'+'	in	green.	Removals	are	shown	prefixed	as	'-'	and	in	yellow.
The	log	is	currently	just	a	read-only	list	for	informational	purposes.
Dismiss	the	Activity	Log	using	the	'X'	or	touching	the	canvas	background.

Help
Pressing	the	'Help'	button	will	bring	up	this	manual.

Panic
Sometimes	with	MIDI	things	can	go	haywire.	This	is	where	the	'Panic'	button	comes	in.	When
pressed,	it	will	issue	a	standard	set	of	MIDI	panic	messages	(all	notes	off	on	all	channels)	to	every
MIDI	port	in	the	system	(whether	present	on	the	canvas	or	not).
When	you	press	the	'Panic'	button,	MidiFire	will	suspend	all	event	routing	so	as	not	to	exascerbate
the	problem.	This	is	shown	by	making	the	whole	canvas	visibly	faded	and	unable	to	receive	user
interaction.	The	'Panic'	button	will	also	turn	a	yellow	colour.
When	you	have	resolved	the	problem,	press	the	yellowed	'Panic'	button	once	again	to	resume	event
processing	and	user	interaction.

Dismissing	Panels/Selections
The	canvas	can	also	be	used	to	instantly	dismiss	all	open	panels	or	cancel	any	connection	selections.
Just	tap	anywhere	on	the	canvas	background.

3.	Managing	Scenes top

Pressing	the	'Scenes'	button	on	the	Button	Bar	will	open	up	the	Scenes	management	panel.	A	Scene
is	a	snapshot	of	a	canvas	that	can	be	loaded,	merged,	shared	or	deleted.	Internally	it	is	a	text	file	in
'property	list'	XML	format.

	
Scenes	Panel

Each	scene	in	your	library	is	presented	as	a	scrollable	list	showing	the	name	of	the	scene	and	any
MIDI	program	change	assignment	for	that	scene.

Saving	your	Work
As	you	work	on	your	canvas	and	block	configuration	you	can	save	a	snapshot	at	any	time	to	a	name
of	your	choice	that	you	can	use	later:

Press	'Scenes'	button	to	open	panel

Press	'Save'	button

Enter	a	name	(or	modify)	for	the	scene

Confirm	(optionally)	if	scene	would	be	overwritten	to	update

Dirty	Scenes
As	you	make	changes	to	the	canvas	following	a	save	(or	load)	the	Scenes	button	will	assume	a
reddish	hue	to	remind	you	that	unsaved	changes	have	been	made.
Following	a	save	or	load	action	the	Scenes	button	will	revert	to	its	normal	colour.

Loading	and	Merging
Scenes	can	be	re-used	in	two	possible	ways:

Load
Next	to	each	scene	name	is	a	separate	'Load'	button.	Pressing	this	will	load	in	that	scene
immediately	and	entirely;	ie.	it	will	clear	the	canvas	first	and	replace	with	the	contents	of	that
scene.	Use	the	individual	Load	buttons	to	switch	between	your	scenes	quickly.
Stored	with	each	scene	is	the	current	zoom	scale	when	saved.	On	'Load'	this	zoom	scale	is
honoured.

Merge
Merging	adds	the	contents	of	a	scene	to	the	canvas	without	clearing	it	first.	Before	you	merge	a
scene,	you	need	to	select	it	in	the	list	first,	by	touching	it	-	it	will	highlight	in	a	blue	colour.	Once

selected,	pressing	the	'Merge'	button	will	add	it	into	the	canvas.
MidiFire	will	intelligently	place	your	merged	scene	into	the	current	canvas	so	as	not	to	cover	any
existing	blocks	on	the	canvas.	The	scene's	zoom	scale	is	not	honoured	during	a	merge.

Tip	-	you	can	save	oft-used	snippets	of	work	into	separate	scenes	and	then	merge	them	as
needed.

Assigning	Remote	MIDI	Control
Scenes	can	be	loaded	(not	merged)	remotely	via	MIDI	Program	Change	message.	Pressing	the
'Assign'	button	on	the	Scenes	Panel	will	switch	to	Program	Change	assign	mode.	This	is	indicated
with	the	'Assign'	button	taking	on	a	green	colour	and	the	individual	'Load'	buttons	being	replaced	by
program	change	number	selectors:

	
Assigning	Scenes

The	first	thing	you	will	need	to	do	in	order	to	activate	remote	MIDI	control	is	to	set	the	'Scene
Channel'	value	using	the	dropdown	selector	next	to	the	(now	green)	Assign	button.	By	default,	Scene
Channel	is	OFF	which	means	that	remote	control	is	disabled.
Scene	change	program	change	messages	can	be	set	to	be	recognised	from	a	specific	channel	only
(recommended)	or	(if	you	really	must)	on	all	(OMNI)	channels.	To	prepare	for	remote	control,	select	a
specific	channel	or	'OMNI'	for	Scene	Channel.
Once	the	Scene	Channel	is	configured,	you	then	assign	a	program	change	number	to	each	of	the
scenes	that	you	wish	to	be	able	to	load	remotely	by	setting	the	program	change	number	using	the
dropdown	in	each	scene	cell.
Note	that	each	scene	must	have	a	unique	program	change	number.	If	you	select	a	number	that	has
already	been	assigned	to	a	different	scene,	then	the	new	scene	will	take	on	the	requested
assignment	and	the	previous	assigned	scene	will	be	marked	as	unassigned.
Once	you	have	finished	assigning	program	change	numbers	to	scenes,	press	the	'Assign'	button	to
leave	assign	mode.	At	this	stage	validly	assigned	program	change	messages	that	are	received	by
MidiFire	will	trigger	a	scene	change,	as	if	the	scene's	individual	'Load'	button	had	been	pressed.
Tip	-	MidiFire	will	honour	assigned	program	change	messages	appearing	on	any	MIDI	source
whether	it	is	currently	displayed	on	the	canvas	or	not.

Sharing
You	can	share	your	saved	scenes	with	other	devices/computers	or	other	MidiFire	users	using	the
'Share'	button.
On	iOS,	the	share	action	invokes	the	device's	inbuilt	sharing	options	that	will	vary	depending	on	the
device.	This	may	include	Airdrop,	email	applications	or	sharing	applications	like	Dropbox.
Also,	on	iOS,	iTunes	sharing	is	enabled,	so	you	can	drag/drop	scenes	in/out	of	your	device	via	the
Apps	>	File	Sharing	area	in	iTunes.	Please	note	that	the	app	is	not	informed	when	you	modify	the
directory	remotely.	If	your	newly	inserted	scenes	are	not	shoing	up,	close	and	re-open	the	Scenes
panel	to	refresh	the	list.
On	macOS	pressing	the	'Share'	button	will	open	the	raw	library	files	in	the	Finder	with	the	currently
selected	scene	file	highlighted	for	you.
To	import	scenes	on	an	iOS	device,	MidiFire	has	registered	'.mfr'	files	as	belonging	to	it	and	you	can
download	and	install	these	files	into	MidiFire	using	the	usual	iOS	mechanisms.	Imported	scenes	will
show	up	in	your	Scenes	panel;	they	are	not	loaded	automatically.
On	macOS	to	import	a	scene	externally	you	can	use	the	'Share'	button	to	open	the	directory	in	the
Finder	and	copy	your	scene	into	the	directory.
Tip	-	because	Scene	files	are	plain	text	files,	they	can	be	shared	via	websites	and	imported
using	your	web	browser.

Cleaning	Up
Finally,	if	you	wish	to	delete	a	scene	from	your	library,	select	it	and	press	the	'Delete'	button.	You	will
be	asked	to	confirm	deletion.	Please	note	that	when	you	delete	a	scene	the	file	is	removed	from	your
device/computer.

4.	Setup top

Use	the	'Setup'	panel	to	configure	application	wide	settings.	These	are	not	stored	in	scenes.

Scenes	Club
Because	MidiFire	is	eminently	extendable,	we	have	a	whole	set	of	pre-made	scenes	available	directly
which	may	be	of	interest	to	you.
Pressing	the	'Scenes	Club'	button	will	open	a	new	panel	showing	a	list	of	available	scenes,
description	and	author.	To	download	any	scene	into	your	library,	press	the	download	icon	to	the	right
of	each	scene.
The	Scenes	Club	is	hosted	on	the	Internet,	so	to	access	and	download	scenes	you	do	need	to	be
online.
Tip	-	if	you	have	any	scenes	which	you	feel	would	be	useful	to	others,	email	them	to	us	and	we
can	distribute	them	(with	attribution)	via	the	Scenes	Club.

Virtual	MIDI	Ports
By	default,	MidiFire	creates	one	pair	of	virtual	MIDI	ports	that	can	be	used	to	send/receive	MIDI	data
to	other	apps	running	on	your	device.	For	some,	this	is	not	enough,	so	if	you	would	like	more
separate	virtual	ports	to	assist	in	your	workflow	then	you	can	have	these	created	for	you	(up	to	64
virtual	ports).
When	MidiFire	has	multiple	virtual	port	pairs	configured,	the	additional	ports	are	numbered
individually	from	1	upwards.	so	that	you	can	distinguish	them	easily.	You	still	get	to	keep	the

'MidiFire'	default/main	port	pair	which	will	always	be	present.
To	change	the	number	of	virtual	port	pairs	advertisied	by	MidiFire	just	make	a	selection	for	the
'midifire	virtual	ports'	dropdown.

Event	Visualisation
As	MIDI	data	is	processed	by	MidiFire,	the	ports	flash	briefly.	If	you	find	this	annoying	or	want	to
improve	performance	when	in	the	foreground	(nothing	flashes	in	the	background)	turn	the	flashing
off	by	setting	'event	visualisation'	to	'no'.

Idle	Timeout	(iOS)
On	iOS	to	prevent	battery	drain,	MidiFire	will	automatically	suspend	itself	after	a	period	of	inactivity.
You	can	adjust	this	timeout	from	the	default	15	minutes	to	something	larger,	or	if	you	are	brave	to
'never'	which	will	disable	auto-suspension	entirely.
Note	that	MidiFire	will	never	suspend	if	the	device	is	powered.

Ignore	Active	Sense
By	default,	MidiFire	will	ignore	all	Active	Sensing	MIDI	messages	on	input	ports	as	they	are	rarely
desired	in	non-hardware	environments.	If	you	need	to	Active	Sensing	messages	to	be	processed,
switch	this	option	to	'no'

Holdover	Processing
'Holdover'	is	a	MidiFire	feature	that	keeps	track	of	held	notes	(or	use	of	the	hold	pedal)	on	each
external	MIDI	input	and	'freezes'	the	MidiFire	configuration	for	that	specific	input	while	the	hold	is	in
effect.
This	means	that	as	you	make	changes	to	MidiFire	on	the	canvas,	(or	load	a	new	scene)	events	from
the	held	MIDI	input	are	not	affected	by	these	changes	until	you	let	go	of	all	notes	and	release	the
hold	pedal.
Therefore,	you	won't	get	stuck	notes	or	lost	pitchbend	messages	and	the	like	when	a	new	scene	is
loaded	or	changes	are	made	to	the	canvas	that	might	affect	these.
Although	holdover	has	been	designed	to	be	very	efficient,	there	could	be	some	slight	performance
loss	especially	with	complex	scenes.	For	those	who	don't	need	the	holdover	processing	and	wish	to
save	some	extra	CPU	cycles,	setting	this	to	'no'	will	disable	it	entirely.
Note,	changes	made	to	Stream	Byter	rules	or	AU	Plugins	are	not	frozen,	so	any	changes	made	to
rules	will	take	effect	whether	a	hold	is	active	or	not.
Tip	-	each	MIDI	input	is	frozen	separately	so	you	can	use	multiple	external	inputs	(controllers,
sequencers)	and	each	will	have	its	own	frozen	configuration	while	a	hold	is	active.

Stern™	Method

This	option	is	a	specialised	method	for	doing	holdover:

1.	The	hold	pedal	is	classed	as	'continuous'	which	means	that	any	value	of	the	hold	CC	(64)	other
than	zero	means	a	hold	and	a	zero	means	release.

2.	When	changes	to	the	canvas	are	made	while	the	hold	pedal	is	depressed	or	notes	are	being
held,	new	notes	played	will	use	the	configuration	of	the	current	canvas.	When	all	the	originally
held	notes	(and	pedal)	are	released,	the	note	off	and	pedal	release	MIDI	events	are	sent	via	the
frozen	configuration.

Remote	Control

You	can	control	some	on-screen	actions	of	MidiFire	via	MIDI	command.	The	actions	(buttons,
switches	or	dropdowns)	that	can	be	remote	controlled	are:

Panic	switch	(application)

Bypass	switch	of	any	module	(scene)

All	'Channel	Strip'	dropdowns,	except	note	remap	(scene)

'Note/Velocity	Split'	split	point,	lower	channel	and	upper	channel	dropdowns	(scene)

'Install	Rules'	button	on	Stream	Byter	(scene)

'Tap	Tempo'	button	and	'Auto	Start'	dropdown	on	'Dynamic	Clock'	(scene)

Any	writeable	parameter	of	an	AU	plugin	(scene)

Assignments	of	actions	marked	as	'scene'	above	are	scene	specific	and	thus	saved	and	restored	with
a	scene.	Non	scene	actions,	marked	as	'application'	above	are	application	wide	and	saved	with
application	preferences.
MIDI	messages	(on	any	specific	channel)	that	can	be	utilised	are:

Continuous	Controller	(except	bank	select)
can	control	buttons,	switches	and	dropdowns

Program	Change
can	control	buttons	and	switches

Note	On/Off
can	control	buttons	and	switches

Tip	-	if	you	want	to	trigger	controls	with	MIDI	messages	other	than	those	listed	above	(eg.
sysex)	you	can	always	use	a	Stream	Byter	to	inject	them	using	an	SND	+I	rule
Remote	Control	messages	can	be	assigned	to	actions	or	learnt	via	the	'Remote	Control'	panel	found
on	the	Setup	panel.

	
Remote	Control	Panel

To	assign	a	MIDI	message	to	an	action,	first	select	it	in	the	list	on	the	Remote	Panel.	Note,	if	the	action
you	wish	to	assign	belongs	to	a	canvas	block,	then	this	block	will	be	given	a	cyan	'ring'	highlight	so
you	can	identify	which	module	you	are	working	with	(handy	when	you	have	multiple	modules	with
the	same	name).

You	can	either	use	the	dropdowns	at	the	bottom	of	the	panel	to	assign	the	MIDI	message	to	the
selected	action,	or	you	can	turn	on	'Learn'	using	the	button	and	MidiFire	will	assign	the	most	recently
received	valid	MIDI	message	to	the	action.	Note	that	while	you	are	'Learning',	normal	remote	control
is	disabled.
If	you	wish	to	remove	an	assignment,	select	'-	none	-'	as	the	value	for	the	'type'	dropdown	at	the
bottom.
The	following	table	explains	how	each	remote	MIDI	message	is	interpreted	for	each	type	of	action:	

Program
Change Note	On/Off Controller

Button momentary
push

momentary	push	on
note	on momentary	push	if	value	>=	64

Switch toggles
switch

note	on	turns	switch	on,
note	off	turns	switch	off

value	64-127	turns	switch	on,	0-63	turns
switch	off

Dropdown -	n/a	- -	n/a	-
value	selects	option	in	a	scaled	fashion.
value	0	is	first	option,	value	127	is	last
option

Tip	-	you	may	assign	the	same	MIDI	message	to	more	than	one	action,	so	you	could	bypass	a
group	of	modules	with	the	one	remote	message.

Bluetooth	MIDI	(some	iOS	devices)
From	within	MidiFire	you	can	setup	Bluetooth	MIDI	connections	if	your	iOS	device	is	recent	enough
to	support	it.
There	are	two	methods	of	connectivity	accessed	by	their	respective	buttons:

Connect	Device
Use	this	button	if	you	wish	to	connect	your	iOS	device	to	a	remote	Bluetooth	MIDI	device	such
as	another	iOS	device	or	a	quicco	or	yamaha	BT01.

Host	Service
If	you	want	to	be	able	to	accept	incoming	Bluetooth	MIDI	requests	from	remote	devices	then
you	use	this	button	to	start	being	a	host.

If	Bluetooth	MIDI	is	not	supported	on	your	device,	then	these	buttons	will	be	missing.	Obviously
Bluetooth	needs	to	be	turned	on	in	your	device.	If	it's	off	and	you	press	any	of	the	Bluetooth	buttons
you	will	be	reminded	that	you	need	to	turn	it	on.
Tip	-	at	the	bottom	of	the	Setup	panel	you	will	find	the	current	version	and	build	number	of
MidiFire	that	you	have	installed.	Please	pass	on	those	details	if	you	contact	us	for	support.

CoreMIDI	Networking	(iOS)
MidiFire	can	be	used	to	initiate	CoreMIDI	(rtpMIDI)	WiFi	connections	from	within	the	app.	Pressing
the	CoreMIDI	Networking	button	will	open	up	a	separate	panel	for	making	these	connections:

remote	host/address

Enter	the	hostname	or	IP	address	of	the	remote	device/computer	that	you	wish	to	initiate	the
connection	to.	By	default	this	is	set	to	'localhost'	which	creates	a	looped	back	connection	where
all	events	sent	to	the	Network	output	port	are	reflected	back	into	the	Network	input.
The	label	for	this	field	will	also	display	the	IP	address	of	the	device.	You	can	use	this	address	in
another	device	if	you	wish	to	connect	to	this	device	from	MidiFire	on	that	other	device.

remote	port	number
This	is	the	IP	port	number	that	the	remote	is	accepting	rtpMIDI	connections	on.	By	default	this	is
5004,	which	is	the	standard	port	number	for	the	first	network	connection.	Generally	this	value
does	not	need	to	be	changed.

auto	connect
Setting	this	option	to	'yes'	will	instruct	MidiFire	to	automatically	initiate	the	connection	when	it
starts	up	the	first	time.

Connect/Disconnect
Press	this	button	to	manually	initiate	a	conection	if	not	currently	connected	(button	is	grey	and
labelled	'Connect')	or	disconnect	all	connections	(button	is	green	and	labelled	'Disconnect')'.

5.	Modules top
While	you	can	do	very	sophisticated	routing	with	just	MIDI	sources	and	destinations	in	MidiFire,	the
application	comes	into	its	own	when	you	introduce	modules	into	the	mix.	There	is	a	variety	of
modules	included	ranging	from	simple/common,	to	more	niche/purpose	built	modules	to	the	most
complex	but	powerful	Stream	Byter	that	lets	you	create	your	own	customised	modules.	Here	is	a
summary	of	the	included	modules:

AU	MIDI	Plugin	-	Audio	Unit	MIDI	FX	plugin

Channel	Strip	-	commonly	used	MIDI	channel	management/transpose/monofy

Note/Velocity	Split	-	split	an	incoming	signal	over	2	MIDI	channels

Pressure	Curve	-	remap	note	velocity	or	aftertouch

Event	Monitor	-	MIDI	monitor	to	examine	events	at	any	canvas	point

Comment	Block	-	for	documenting	your	work

Protocol	Filter	-	block/allow	events	within	a	MIDI	protocol	range

Dynamic	Clock	-	intensely	accurate	and	remotely	controllable	clock	source

Stream	Byter	-	write	your	own	processing	modules

Tracking	Clamp	-	reduce	aberrations	from	MIDI	guitars

Robotic	Knob	-	generate	complementary	CC	messages	based	on	performance

OSC	Exchange	-	pipe	OSC	data	across	a	MIDI	interface

Each	module	is	documented	in	detail	below.

AU	MIDI	Plugin modules

As	of	version	2.0,	MidiFire	supports	hosting	of	Audio	Unit	MIDI	FX	plugins	presented	as	integrated
modules.	Simply	drop	an	AU	MIDI	Plugin	module	onto	the	canvas,	select	from	your	installed	plugins
and	connect	up	to	whatever	you	like	just	as	a	built-in	module.
Uniquely,	plugins	can	be	hosted	with	zero	latency.	See	further	for	details.	on	this.

Parameters:

AU	MIDI	Plugin	(default:	-no	selection-)
Use	this	drop	down	list	to	choose	from	installed	MIDI	FX	available.	Once	you	select	a	plugin,	its
GUI	will	automatically	open	for	you	to	configure	it.
Please	note:	only	validated	MIDI	FX	are	supported	and	iOS	11	is	required	at	a	minimum.

process	with	zero	latency	(default:	depends)
In	other	hosts,	MIDI	events	are	processed	along	with	an	audio	engine	which	deals	with	small
chunks	of	audio	at	a	time.	This	results	in	live	MIDI	events	being	delayed	variably	anywhere	up	to
23ms	(or	greater)	depending	upon	this	chunk	size	(audio	render	buffer).
As	MidiFire	is	a	MIDI	only	application,	the	option	exists	to	process	incoming	live	events
independently	from	the	render	cycle	and	immediately.	ie.	zero	latency	processing.
By	default,	most	plugins	will	be	configured	not	to	operate	at	zero	latency,	so	for	these	plugins
you	will	need	to	switch	on	zero	latency	explicitly.	Plugins	that	identify	themselves	as	zero	latency
compatible	(all	Audeonic	plugins)	will	default	to	zero	latency	switched	on.
Not	all	MIDI	FX	are	suited	to	this;	FX	that	monitor	the	timeline	may	get	confused.	If	you	find	that
a	MIDI	effect	behaves	erratically,	switch	this	option	off.

Open	Plugin
Pressing	this	button	will	open/close	the	plugin's	GUI	panel.	A	shortcut	for	this	is	available	by
touching	the	block	on	the	canvas.

Where	an	AU	plugin	exposes	writeable	AU	parameters,	these	are	available	to	be	remote	MIDI
controlled	using	MidiFire's	'Remote	Control'	facility	in	the	same	way	as	built-in	modules.
Plugins	that	respond	to	beat	positions	(eg.	sequencers)	can	be	driven	and	synced	either	using
MidiFire's	Dynamic	Clock	module	or	via	external	MIDI	clock.
Tip	-	a	plugin's	configuration	is	saved/restored	with	scenes.

Channel	Strip modules

The	Channel	Strip	module	packs	the	most	commonly	used	MIDI	channelisation	functions	into	one
handy	module.	Place	this	module	before	MIDI	outputs	to	limit	incoming	channels,	remap	outgoing
channel,	remap	and/or	transpose	notes	and	convert	poly	to	mono.

Parameters:

allowed	incoming	channel	(default:	any)
Set	the	specific	channel	that	you	want	the	module	to	accept.	If	set	to	anything	other	than	'any'
the	module	will	block	all	MIDI	events	that	are	not	on	the	selected	channel.

transpose	notes	(default:	0	semitones)
Transpose	all	incoming	note	events	by	the	number	of	semitones	selected	in	the	dropdown.

remap	note	from/to	(default:	no	mapping)

Remap	incoming	notes	to	different	output	notes.	First	select	the	incoming	note	you	wish	to	map
from	on	the	left.	Next	select	the	note	you	wish	to	remap	to	on	the	right.	Repeat	for	as	many
notes	as	you	wish	to	remap.
Be	aware	that	any	remapping	happens	after	any	transpose.

convert	notes	to	mono	(default:	no)
Switching	this	on	will	convert	a	polyphonic	source	to	mono	intelligently	and	will	operate	like	a
mono	keyboard	from	the	good	old	days.

outgoing	channel	remap	(default:	no)
You	can	remap	the	outgoing	channel	of	channelised	MIDI	events	to	match	the	channel	of	a
receiver.	Handy	for	remapping	the	default	channel	1	of	most	controllers	to	a	specific	channel.

block	when	bypassed	(default:	no)
When	this	option	is	set	to	'yes',	then	when	the	module	is	bypassed,	rather	than	passing	the
events	on	as	normal,	all	events	are	instead	blocked.	This	is	handy	when	you	wish	to	use	the
bypass	button	to	dynamically	control	event	flows	like	a	tap.

Tip	-	on	the	canvas	block,	there	are	two	labels	that	show	you	the	configured	channel	mapping
of	the	module.	The	left	(info	1)	shows	the	allowed	incoming	channel	number	(if	any)	and	the
right	label	(info	2)	shows	the	outgoing	channel	being	remapped	to	(if	configured).

Note/Velocity	Strip modules

The	Note/Velocity	Split	module	allows	the	splitting	of	an	incoming	event	stream	over	two	user
defined	MIDI	channels.	A	split	can	be	done	on	keyboard	position	(note)	or	note	velocity.	Incoming
note	and	aftertouch	events	are	remapped	regardless	of	the	channel	that	these	events	are	on	when
entering	the	module.

Parameters:

split	type	(default:	note)
If	this	parameter	is	set	to	'note'	then	the	split	will	operate	based	on	the	pitch	of	the	note	you
select	as	the	split	point.	All	note	ons,	offs	and	key	aftertouch	will	be	sent	to	either	the	lower
channel	depending	upon	the	pitch	of	the	note.
Setting	this	parameter	to	'velocity'	will	send	the	note	(and	aftertouch	for	that	note)	to	either	the
lower	or	upper	channel	depending	upon	the	note's	original	strike	velocity.

split	point	(default:	middle	C	or	64	velocity)
This	is	the	value	that	determines	whether	the	note	events	will	be	directed	to	the	lower	or	upper
channel.	The	split	point	is	the	first	note	or	velocity	value	in	the	upper	range.

lower	channel	(default:	1)
Notes	whose	pitch	or	velocity	(depending	upon	type	parameter)	are	lower	than	the	split	point
will	be	remapped	to	the	channel	specified	in	this	parameter.

upper	channel	(default:	2)
Notes	whose	pitch	or	velocity	(depending	on	type	parameter)	are	greater	than	or	equal	to	the
split	point	will	be	remapped	to	this	channel.

non-note/aftertouch	handling	(default:	pass	unchanged)

Other	channelised	events	passing	through	the	splitter	(pitchbend,	channel	pressure,	controllers
and	program	changes)	can	be	handled	in	several	different	ways	depending	on	the	situation.
If	these	types	of	events	should	not	be	altered	in	any	way,	then	set	this	to	'pass	unchanged'.	If	you
wish	to	block	these	other	events	entirely	then	set	this	to	'block'
Alternatively,	you	can	remap	these	other	events	to	either	the	lower	split	channel	only,	the	upper
split	channel	only	or	have	them	sent	to	both	upper	and	lower	split	channels	by	selecting	these	in
the	dropdown	menu.
All	of	these	other	events	are	affected	as	a	group.	If	you	need	finer	control	(say	sending	CC	A	to
lower	and	CC	B	to	upper)	then	use	a	Stream	Byter	beforehand	to	do	the	controller	remapping
and	leave	this	option	at	the	default.

The	graphic	below	the	parameters	displays	the	current	split	point.	You	can	also	touch/mouse	the
graphic	to	set	the	split	point.
Tip	-	the	split	point	and	upper/lower	channel	parameters	are	all	remote	controllable	via	MIDI
(configured	in	Remote	Control)

Pressure	Curve modules

The	Pressure	Curve	module	allows	the	definition	of	a	velocity	curve	map	that	can	be	applied	to
incoming	notes,	key	aftertouch	or	channel	pressure.	The	map	can	be	adjusted	point	by	point	or
graphically	using	touch/mouse	control.

Parameters:

curve	type	(default:	note	velocity)
This	parameter	determines	what	type	of	events	the	map	curve	will	be	applied	to.	Either	notes,
aftertouch	(polyphonic	per	note),	channel	pressure	or	controller	value	can	be	affected.

remap	value	from/to	(default:	no	(linear)	mapping)
Remap	incoming	velocity/aftertouch/controller	values	to	different	values.	First	select	the
incoming	value	you	wish	to	map	from	on	the	left.	Next	select	the	value	you	wish	to	remap	to	on
the	right.	Repeat	for	as	many	values	as	you	wish	to	remap.

Tip	-	the	graphic	below	the	parameters	displays	the	current	curve.	You	can	also	touch/mouse
the	graphic	to	draw	or	modify	the	curve.

Event	Monitor modules

The	Event	Monitor	module	allows	you	to	see	at	a	glance	the	MIDI	events	coming	from	a	port	or	a
module.	The	canvas	block	shows	the	last	few	events	in	a	compact	form.	Expanding	the	module
shows	all	events	received	in	a	more	detailed	form.
Tip	-	use	the	'Clear'	button	to	clear	events	in	the	detailed	view.

Comment	Block modules

The	Comment	Block	is	a	non-functional	module	that	you	can	use	to	record	free-form	notes	about	the
canvas.	You	can	add	text	to	the	block	itself	(summary)	and	more	detailed	notes	in	the	module's
settings.
Tip	-	Comment	Blocks	will	be	saved	into	scenes.

modules

Protocol	Filter

The	Protocol	Filter	module	allows	you	to	block	or	allow	a	range	of	MIDI	protocol	events	passing
through	the	module.	It	does	this	by	marking	a	range	of	MIDI	events	(according	to	the	MIDI	data
specification)	and	then	allows	you	to	block	or	only	allow	events	that	fall	into	that	range.

Parameters:

FROM	(hex	message)
This	value	shows	(and	allows	you	to	change)	the	starting	event	to	which	the	filter	(block/allow)
will	be	applied.	If	you	know	the	hex	of	your	starting	(and	ending	message)	you	can	just	enter	it	in
this	field.	Alternatively,	you	can	make	a	selection	using	the	other	parameters	and	the	hex	field
will	be	updated	too.

event	type,	channel,	number,	value

You	can	use	these	parameters	to	specify	the	MIDI	message	in	a	more	user	friendly	way	if	you
prefer.	Note	that	as	you	change	any	of	these	values,	the	corresponding	hex	value	above
changes	accordingly.	Also,	some	of	the	parameter	labels	will	change	depending	upon	the	event
type	selected	to	make	sense	MIDI-wise

TO	(hex	message)
You	mark	the	end	of	the	range	in	the	same	way	as	the	start	by	adjusting	the	hex	value	(or	other
parameters).

Block/Allow	(default:	Allow)
Set	whether	the	filter	blocks	or	only	allows	your	configured	range	by	toggling	these	two	buttons.

Tip	-	because	this	works	on	a	horizontal	range	of	hex	values,	the	Protocol	Filter	is	probably	not
the	tool	for	blocking/allowing	specific	MIDI	channels.	Use	the	Channel	Strip	or	Stream	Byter
for	this.

Dynamic	Clock modules

MidiFire	implements	the	much	lauded	MidiBus	clock	via	a	specialised	module.	You	can	control	many
aspects	of	the	internal	clock	dynamically	via	remote	control	MIDI	messages;	see	further	for	details	of
this.
The	output	of	the	clock	signal	varies	slightly	depending	upon	how	the	module	is	connected:

	
Clock	Connections

1.	The	virtual	destination/output	'MidiFire	Clock'	which	is	presented	to	other	apps	by	MidiFire	will
always	be	an	unmodified	copy	of	the	clock	signal.	You	do	not	need	to	add	the	'MidiFire	Clock'
port	to	the	canvas.

2.	If	the	Dynamic	Clock	module	is	directly	connected	to	a	MIDI	destination/output	(like	'MidiFire	1'
in	the	above	diagram),	then	that	MIDI	destination	will	receive	the	internal	clock	output	directly,
bypassing	any	internal	routing	in	MidiFire.	This	is	the	most	efficient	way	of	distributing	the	clock
signal	to	a	destination.

3.	If	the	Dynamic	Clock	module	is	indirectly	connected	to	a	MIDI	destination/output	(like	MidiFire
2'	in	the	above	diagram)	then	the	internal	clock	signal	is	first	of	all	fed	into	the	interconnecting
module(s)	and	then	routed	to	the	output.	This	type	of	connection	is	made	when	you	want	to	do
something	with	the	clock	signal	beforehand.

Parameters:

tempo
Use	this	field	to	set	a	specific	tempo	manually.	You	can	use	decimal	fractions	like	121.34	if	you
like	and	the	value	can	range	from	very	slow	to	very,	very	high	(how	high	will	depend	upon	the
processing	power	available	on	your	device)

Tap	Tempo
Tap	this	button	a	few	times	to	set	the	tempo	according	to	how	quickly	you	tap	it.

Learn	Tap
You	can	set	up	a	remote	MIDI	event	to	control	tap	tempo.	Press	the	'Learn	Tap'	to	arm	and	the
next	MIDI	event	received	will	be	set	as	the	tap	tempo	trigger.	Subsequent	MIDI	events	that
match	the	learnt	event	are	processed	as	if	you	had	tapped	the	'Tap	Tempo'	button	above.	Learnt
events	can	(only)	be	a	note	on,	non	zero	continuous	controller	or	program	change	types.

learnt	tap	event
This	will	either	show	the	learnt	tap	tempo	MIDI	event,	or	if	you	know	the	hex	message	of	the
event	you	wish	to	use,	you	can	simply	enter	that.

Auto	Start	Clock
You	can	tell	MidiFire	to	automatically	start	the	clock	as	the	tempo	is	being	tapped.	The	number
of	taps	required	to	start	is	set	using	the	field	menu	and	the	clock	will	start	exactly	on	the	beat
after	that	number	of	taps.	For	example,	if	you	set	the	value	to	'4'	and	start	tapping,	the	clock	will
automatically	start	on	the	beat	after	the	4th	tap,	ie.	on	tap	5	(even	if	you	don't	tap	5	times).
Setting	this	to	'no'	(the	default)	will	disable	the	feature	and	you	will	need	to	start	the	clock
yourself.

The	'bypass'	block	button	is	repurposed	to	play/stop	for	this	module	(and	the	'power'	icon	replaced
by	more	transport	friendly	icons).	Tap	the	start/stop	button	to	start/stop	the	clock.	Note,	when	the
clock	is	running,	the	module	block	becomes	yellow.
The	left	hand	info	label	on	the	block	shows	the	currently	configured	(or	if	running,	calculated)	BPM.
The	right	label	shows	where	the	clock	is	up	to	in	real	world	time	in	hh:mm:ss	format.
Tip	-	the	Dynamic	Clock	module	is	a	clock	generator.	However,	you	can	still	feed	(and
manipulate	and	send	out)	an	external	clock	source	from	another	app	or	physical	port.

Remote	Control

The	Dynamic	Clock	responds	to	a	set	of	MIDI	messages	to	control	the	transport	and	tempo.	These
are	described	as	follows:

Tap	Tempo	(default	CC	63	on	channel	1)

Control	the	tempo	dynamically	via	tap	events.	This	MIDI	event	can	be	set	on	the	configuration
panel	or	learnt	(via	same	panel)

Start,	Stop	and	Continue	(fixed	System	Real	Time)
You	can	start,	continue	or	stop	the	clock	by	sending	the	standard	MIDI	start/stop/continue
messages	(FA,	FC	and	FB	respectively	in	hex)

Coarse/Fine	tempo	adjustment	(fixed	CC	19	and	51,	channel	1)
Sending	CC	19	on	channel	1	will	adjust	the	tempo	to	an	absolute	value	between	20	and	200
BPM	depending	on	the	value	byte	of	the	CC	(0	=	20,	127	=	200)
Sending	CC	51	on	channel	1	will	adjust	the	current	coarse	tempo	from	-20	to	+20	in	tenths	of	a
BPM	(0	=	-20.0,	127	=	+20.0).

Tempo	increment/decrement	(fixed	CC	18	and	50,	channel	1)
Sending	CC	18	on	channel	1	will	increment	the	current	tempo	by	tenths	of	a	BPM.	(ie.	value	byte
1	=	1/10BPM,	2	=	2/10BPM,	10	=	1BPM,	100	=	10BPM)
Sending	CC	50	on	channel	1	will	decrement	the	current	tempo	by	tenths	of	a	BPM.	(ie.	value
byte	1	=	1/10BPM,	2	=	2/10BPM,	10	=	1BPM,	100	=	10BPM)

Absolute	tempo	value	(fixed	sysex)
You	can	remotely	set	the	clock	tempo	to	an	exact	BPM	value	using	a	sysex	message:

F0 5A <ThousandsHundreds> <TensUnits> <TenthsHundredths> F7

example: F0 5A 01 25 37 F7 = 125.37 bpm

Remote	MIDI	control	messages	can	be	fed	into	the	Dynamic	Clock	module	directly	from	other	apps
by	sending	the	control	messages	to	the	'MidiFire	Clock'	virtual	port	which	is	always	listening	to	these

messages.	Alternatively,	you	can	feed	remote	MIDI	control	messages	into	the	Dynamic	Clock	by
connecting	MIDI	inputs	(or	module	outputs)	to	the	Dynamic	Clock's	input	connector	in	the	usual
fashion.	Remote	control	events	are	processed	whether	the	clock	is	running	or	not.
Tip	-	you	can	only	ever	have	one	instance	of	Dynamic	Clock	on	the	canvas	at	one	time.
Tip	-	if	you	save	a	scene	with	the	clock	currently	running,	then	when	you	load	that	scene	later,
the	clock	will	autostart.

Stream	Byter modules

Check	out	StreamByter	University	on	our	forum	for	detailed	articles	on	getting	started	and
tutorials.
The	Stream	Byter	started	out	as	a	way	for	us	to	extend	MidiBridge	'out	in	the	field'	for	customers,	but
gradually	moved	to	be	one	of	the	most	used	(and	infamous)	aspects	of	MidiBridge.	Following	on
from	our	experiences	and	suggestions,	MidiFire	implements	a	new	backwards	compatible	but	much
more	advanced	Stream	Byter	module.
You	use	the	Stream	Byter	to	program	your	own	custom	MIDI	processing	modules	which	you	can	then
go	on	to	re-use	again	and	again.
With	power	comes	complexity,	so	the	Stream	Byter	has	a	bit	of	a	learning	curve	and	you	also	need	to
understand	the	MIDI	protocol.	Many	customers	have	mastered	the	Stream	Byter	but	we	do	recognise
it	is	somewhat	esoteric.	Therefore	we	offer	to	provide	assistance	in	writing	Stream	Byter	rules	via
email	or	via	our	soapbox	forum	for	those	that	have	better	things	to	do	with	their	time.
If	however,	you	are	not	daunted	by	a	bit	of	complexity,	then	here	is	'the	gory	detail'	(that's	a	nod	to
the	PERL	manual)	for	reference	purposes.
Tip	-	if	you're	looking	for	the	syntax	for	specific	rules,	then	here	is	a	handy	set	of	links	for	you:
Stream	Byter	I,	Stream	Byter	II,	Variables/Values,	Conditionals,	Assign,	Send,	Maths,	Labels,
Logging,	QWERTY	keystrokes	(mac)

Stream	Byter	(MidiBridge	version)

This	first	section	of	the	Stream	Byter	reference	covers	the	MidiBridge	version	of	the	Stream	Byter	to
which	MidiFire	is	(almost	completely)	backwards	compatible.	This	section	was	lifted	(with	slight
modification)	from	the	MidiBridge	manual	and	we've	kept	it	mostly	intact	for	posterity	reasons.
Some	of	the	things	you	can	do	with	the	MidiBridge	Stream	Byter	are:

Map	any	MIDI	event	to	any	other	MIDI	event	including	type,	channel	and	value.

Create	up	to	128	non-contiguous	zones	per	channel.

Create	overlapping	zones.

Split	controller	messages	into	channelised	zones.

Use	note	events	to	change	scenes.

More	precise	blocking	of	events	than	the	event	filter.

This	is	hardly	an	exhaustive	list,	but	with	flexibility	comes	some	complexity,	and	to	use	the	Stream
Byter	you	do	need	an	understanding	of	the	MIDI	protocol,	but	fear	not,	as	because	it	is	possible	to
paste	rules	from	an	email,	we	can	help	by	designing	rulesets	for	what	you	are	trying	to	achieve	and
email	them	to	you.
We	have	also	produced	a	detailed	tutorial	for	creating	Stream	Byter	rulesets	(on	our	website)	and	you
can	also	post	queries	about	this	(and	of	course	anything	MidiBridge	related)	on	our	support	forum,

again,	see	our	website.

	
Stream	Byter

The	Stream	Byter	panel	contains	an	editable	text	window	for	you	to	define	rules	to	match	and	act	on
MIDI	events.	One	rule	per	line	is	permitted	and	you	can	comment	your	rules	by	preceding	your
commentary	with	a	'#'	symbol.
Once	you	have	entered	your	rules,	you	press	the	'Install	Rules'	button	which	checks	your	rules	for
validity.	If	any	rules	are	incorrect,	these	are	marked	with	'ERR'	and	are	commented	out.	To	fix	a	rule
with	an	error,	simply	edit	the	line	(no	need	to	remove	the	'#ERR'	part!)	and	press	the	'Install	Rules'
button	to	try	again.
Each	rule	consists	of	two	clauses,	separated	by	one	'='	sign.
The	clause	to	the	left	of	the	'='	is	the	input	clause	where	you	specify	which	MIDI	events	are	to	be
considered.
The	clause	to	the	right	of	the	'='	is	the	output	clause	where	you	specify	what	happens	to	an	event
when	it	matches	the	input	clause.
You	can	also	specify	flags	at	the	end	of	the	output	clause:

+C	-	clone	the	incoming	message	and	apply	the	output	clause	to	the	clone.

+B	-	block	the	incoming	message	if	it	matches	the	input	clause

+Dnnn	-	delay	the	event	by	nnn	milliseconds

Both	input	and	output	clauses	are	constructed	by	1,2	or	3	separate	hex	bytes	depending	upon	the
nature	of	the	rule.	Here	are	some	simple	examples:

remap all controller events coming in on channel 1 to channel 2
B0 = B1

clone all controller events coming in on channel 1 to channel 2
B0 = B1 +C

remap controller 7 on channel 0 to controller 6 on channel 1
B0 07 = B1 06

remap note C-2 to program change 0 (on channel 1)
90 00 = C0 00

You	can	also	specify	wildcards	and	ranges	in	the	incoming	clause:

The	value	'N'	in	the	first	nibble	of	the	first	byte	represents	note	on	and	note	offs	(ie.	8	or	9)

The	value	'X'	in	the	first	nibble	of	the	first	byte	represents	all	event	types.

The	first	nibble	of	the	first	byte	(type)	can	be	set	with	a	range	of	types	to	match.	(0-F)

The	value	'X'	in	the	second	nibble	of	the	first	byte	represents	any	channel.

The	value	'XX'	for	the	second	or	third	bytes	represent	any	value.	(00-7F)

The	second	nibble	of	the	first	byte	(channel)	can	be	set	with	a	range	of	channels	to	match.	(0-F)

Here	are	some	examples	of	wildcards:

rewrite all events on channel 1 to channel 2
X0 = X1

rewrite all note on/off messages on channel 1 to channel 2
N0 = X1

collapse all notes on all channels to channel 1
NX = X0

block active sense messages
FE = XX +B

control controllers 6 and 7 with controller 6
BX 06 = XX 07 +C

rewrite all program changes to program change 1 on same channel
CX XX = XX 01

You'll	note	that	you	can	use	'X'	and	'XX'	wildcards	in	the	output	clause.	This	signifies	that	the
incoming	corresponding	value	of	the	event	is	to	be	preserved.
You	can	also	replace	byte	2	with	byte	3	(and	vice	versa)	by	specifying	'X2'	and	'X3'	for	the	values	of
byte	2	or	3	in	the	output	clause.
You	can	specify	ranges	of	values	using	the	'-'	sign	inbetween	low	and	high	values	for	type	(8-F),
channel	(0-F),	number	(00-7F)	and	value	(00-7F).	Examples:

remap all events on channels 1-8 to channel 10
X0-7 = X9

limit the max velocity on all notes on channel 2
N1 XX 40-7F = XX XX 40

These	examples	are	quite	simple	and	are	to	provide	a	foundation	for	writing	more	useful	real-world
rules.	Again,	please	do	look	at	our	tutorial,	post	to	our	forum	or	email	us	if	you	would	like	help	in
creating	custom	rules	for	your	requirements.	There	is	no	doubt	that	this	module	is	not	for	the
beginner.
Finally,	some	caveats	to	be	aware	of	when	writing	rules:

Rules	are	evaluated	top	to	bottom	and	the	results	of	each	rule	are	fed	into	the	next	(unless	the
clone	flag	is	set).

Stream	Byter	II	(MidiFire	extensions)

MidiFire	extends	the	MidiBridge	Stream	Byter	with	many	oft-requested	features	and	incorporates	a
slightly	different	way	of	specifying	rules.	You	can	mix	and	match	Stream	Byter	I	and	II	rules	in	most
circumstances.
Also,	in	the	new	freeform	module	paradigm,	you	can	create	multiple	Stream	Byter	modules	to
operate	in	series	or	parallel.
Let's	start	with	some	basics:

Variables

Each	StreamByter	has	its	own	set	of	four	local	variable	arrays	(prefixed	by	I,	J,	K	and	L)	and	there	is
one	global	variable	array	(prefixed	by	G)	shared	among	all	StreamByters	per	host	app.	These	arrays
each	have	256	slots	of	unsigned	16	bit	integers.	A	'wide'	array,	prefixed	by	W,	has	2048	slots	of
unsigned	16	bit	integers.	A	'precision'	array,	prefixed	by	P,	has	256	slots	of	32	bit	signed	integers.
The	current	MIDI	message	being	processed	is	also	addressed	as	an	unsigned	8	bit	array	(max	size
65536	bytes)	prefixed	by	the	letter	M.	Each	variable	letter	is	followed	by	a	number	(hex	or	decimal)
that	marks	the	position	in	the	array	starting	from	0.	Some	examples:

L00 - local array L, 1st index
I2A - local array I, 43rd index (hex)
I$43 - local array I, 43rd index (decimal)
G72 - global array G, 115th index (hex)
M03 - message byte number 4 (counting from 1)
M1234 - message byte number 4661 (sysex message!)
M$1234 - message byte number 1235 (using decmial)

A	special	variable	ML	contains	the	length	of	the	current	MIDI	message,	Special	variable	MC	contains
the	MIDI	channel	(0-F)	of	the	current	message	(although	this	returns	F0	if	the	message	is	not	a
channelised	message).	Special	variable	MT	contains	the	MIDI	type/status	([8-F]0)	of	the	current
message	(ie.	the	first	nibble	of	the	first	byte,	with	any	channel	removed).	None	of	these	variables	can
be	assigned	to;	treat	as	read-only.
An	astute	reader	may	realise	that	'MC'	should	be	the	13th	byte	of	a	message.	This	was	an	oversight
and	rather	than	break	existing	scripts,	to	get	the	13th	element	of	a	message	use	M$12.
Another	special	variable	'R'	returns	a	random	number	from	0	to	(nnn	is	hex	number	or	variable)).	This
variable	may	not	be	assigned	directly.
The	special	variable	'BP'	(or	'BPM'	if	you	like)	will	contain	the	current	tempo	of	the	MidiFire	Dynamic
Clock	module	if	present.	The	BPM	value	is	in	100's	of	the	BPM,	so	for	example	a	BPM	of	127.32	will
have	a	value	in	the	variable	of	12732.
The	special	variable	'PO'	(or	'POS'	if	you	like)	will	contain	the	current	MidiFire	clock	position	in
milliseconds	(if	running).	This	is	a	32	bit	signed	value.
Variables	can	be	indirect,	much	like	an	indirect	cell	in	excel	or	a	pointer	in	C.	An	indirect	variable	is	a
variable	(as	above,	except	ML/MC/MT)	prefixed	by	G,	M	or	I-L.	Again,	this	might	be	better	shown	by
example:

GL0 - global array G, index is that of the value stored in variable L0
 (local array L, 1st index)

MG03 - MIDI message array, index is that of the value stored in the variable G03
 (global array G, 4th index)

Variables	can	be	used	in	conditional	blocks,	send	commands,	assign	directives	and	maths	directives
(all	explained	below).	Variables	cannot	be	used	in	Stream	Byter	1	rules.

Timer	Variables

A	special	set	of	8	'timer'	variables,	T00	to	T07	are	also	available.	These	let	you	do	timing	calculations
inside	the	Stream	Byter.
Each	time	you	refer	to	a	timer	variable,	the	value	returned	will	be	the	number	of	milliseconds	elapsed
since	that	timer	variable	was	last	referenced.
The	first	time	you	refer	to	a	timer	variable	after	a	scene	load,	it	will	return	0	milliseconds.
As	the	timer	variables	are	16	bit,	the	maximum	time	interval	is	65.535	seconds.
Tip	-	the	values	of	variables	are	not	reset	when	you	press	the	'Install	Rules'	button,	but	they	are
reset	during	a	scene	load.'

Values

A	value	is	either	a	variable	(as	above)	or	a	literal	hex	value.
Don't	like	using	hex	numbers?	You	can	prefix	literal	values	with	a	'$'	symbol	to	mark	them	as	decimal
values:

 MAT M0 = $20 + $40
 ASS L0 = $127

Tip	-	You	can	specify	negative	decimal	number	like:	$-32
You	can	also	use	note	literals	(according	to	yamaha	note	numbering	convention	which	numbers	the
notes	from	C-2	to	G8)	by	prefixing	the	note	with	a	'^'	character.

 assign i0 = ^C-2 ^G8 ^Bb0 ^3C ^F#6

 if m1 == 90 ^3c
 # found a middle C
 end

Aliases

You	can	give	any	value	an	alias	(single	word)	of	your	choosing	to	make	your	code	easier	to	read.
Aliases	are	set	using	the	ALIAS	keyword:

ALIAS <value> <name>

Whenever	the	'name'	parameter	of	the	ALIAS	rule	is	seen	in	place	of	a	value,	then	that	value	will	be
referenced	instead.	Here	is	an	example:

IF LOAD
 # setup some aliases
 ALIAS Q0 CHANNEL
 ALIAS $127 CC_MAX
 ALIAS I0 TEMP_VARIABLE
END

IF MC == CHANNEL

 MAT TEMP_VARIABLE = B0 + CHANNEL
 SND TEMP_VARIABLE 07 CC_MAX
END

Conditionals	(IF/ELSE/END)

A	conditional	block	is	a	set	of	rules	that	will	only	be	evaluated/executed	if	the	condition	is	true.	An	IF
must	be	terminated	by	an	END	to	mark	the	end	of	the	conditional,	but	an	ELSE	is	optional.	For
example:

see if the current MIDI message
is a program change on MIDI channel 1
IF M0 == C0 # compare 1st msg byte with 'C0' literal
 # do something
ELSE
 # do something different
END

The	conditional	expression	(after	the	IF)	is	defined	as

<value> <operator> <value> [<value> [<value>] [<value>]] [+L[OOP]]

An	operator	can	be	one	of:

==, !=, <, <=, >, >=

If	more	than	one	value	is	specified	after	the	operator	(max	4)	then	the	left	hand	value	should	be	a
variable	and	each	right	hand	variable	corresponds	to	an	incremental	index.	Example:

IF M12 == 64 32 G01
 # do something
END

This	compares	M12	against	64,	M13	against	32	and	M14	against	G01	and	only	if	all	3	are	equal	is	the
condition	true.	This	is	useful	for	identifying	specific	sysex	messages	that	you	wish	to	modify	as	they
pass	through.
Here	is	an	example	using	an	indirect	reference	to	demonstrate	that	in	a	multi	RHS	comparison,
against	an	indirect	LHS	value	enumerates	the	primary	array	and	not	the	second	(!):

ASS K0 = 1 2 3 4 5 6 7
ASS I0 = 3

IF KI0 == 4 5 6
 # this will be true
END

the conditional above works out to be
the same as
IF K3 == 4
 IF K4 == 5
 IF K5 == 6
 END
 END
END

Conditionals	can	be	nested	to	make	an	'and':

IF M00 == B0
 IF M01 < 20 30
 END
END

or	in	series	as	an	'or'

IF G0 > 01
END
IF G0 <= 01
END

The	'+L'	flag	indicates	that	the	condition	is	to	execute	in	a	loop.	When	control	reaches	the	matching
END,	instead	of	proceeding	to	the	following	rule,	control	is	instead	passed	back	to	the	original	IF	line
where	the	condition	is	evaluated	again.	If	the	condition	is	(still)	true,	then	the	IF	clause	is	executed
again.	If	the	condition	is	false,	control	jumps	to	the	next	rule	after	the	matching	END.	Note,	to	avoid
nasty	hangs	if	an	infinite	loop	is	accidentally	programmed,	a	looped	conditional	will	not	loop	more
than	128	times.
Tip	-	You	can	use	the	keyword	'WHILE'	instead	of	the	'IF'	which	implies	the	+L	flag	is	set.

ASS I0 = 0
IF I0 < 10 +L
 MAT I0 = I0 + 1
END

is	the	same	as:

ASS I0 = 0
WHILE I0 < 10
 MAT I0 = I0 + 1
END

Finally,	there	is	a	special	condition	called	'LOAD'	which	is	always	true	when	a	module	is	loaded
(either	when	the	app	starts	or	is	in	a	scene	that	is	recalled).	This	lets	you	initialise	or	do	stuff	before
any	messages	are	processed.	Inside	a	LOAD	block,	the	M	variable	array	is	not	available,	since	there	is
no	MIDI	message:

send program change 2/ch1 with 2s delay on load
IF LOAD
 SEND C0 01 +D2000
END

Extra	rules	(BLOCK/EXIT)

In	version	2.0,	two	new	rules	to	make	logic	a	little	easier	are	available:
BLOCK	-	block	the	current	event	(same	as	XX	=	XX	+B)
EXIT	-	stop	any	further	processing	and	exit	the	script	immediately

block and exit script when we see an
active sense message
IF M0 == FE

 BLOCK
 EXIT
END

Tip	-	BLOCK	and	EXIT	have	no	effect	inside	an	IF	LOAD	section.

Send	(SND)

You	use	the	SND	command	to	issue	an	arbitrary	MIDI	message:

S[E]ND <value> [<value> {<value> ...}] [+F[ORCE]] [+I[NJECT]] [+Dnnnn]

Here	are	some	examples

SND C0 01 # send PC 1 to module's output
SND M0 M1 7F # send current message with 3rd byte
 # fixed to 127
SEND G0 L0 L1 # send a MIDI message constructed from
 # global/local variables

inject message back into MidiFire in 500ms
SND B0 07 72 +I +D500

The	maximum	number	of	bytes	that	can	be	sent	in	the	one	SND	rule	is	16.
Normally,	StreamByter	will	check	that	what	you	are	trying	to	send	is	a	valid	MIDI	message.
Sometimes,	you	might	wish	to	make	up	a	long	sysex	message	and	need	to	split	over	multiple	SND
lines.	You	can	disable	to	validation	checking	using	the	+F	(force)	flag.
In	addition,	you	can	specify	an	'+I'	flag	at	the	end	of	a	SND.	Normally	a	SND	just	sends	the	message
out	of	the	module	into	the	next.	If	you	specify	the	+I	(inject)	flag,	then	the	message	is	injected	'at	the
top'	as	if	it	was	received	from	the	current	message's	MIDI	port	(or	the	MidiFire	virtual	port	in	a	LOAD
block).	Use	the	+I	flag	to	auto-select	a	scene	change	(for	example).
Finally	you	can	delay	the	SND	by	using	the	+Dnnn	flag	(where	nnn	is	a	decimal	value	in	ms),	so
+D2000	means	with	a	2	second	delay.	The	maximum	delay	is	65535	milliseconds.
You	can	also	use	the	keyword	SEND	instead	of	SND.
New	in	version	2.0	is	the	ability	to	send	a	UDP	message	using	the	SND	command:

S[E]ND <start> <size> +U<hostname>:<port>

The	data	to	be	sent	is	taken	(only)	from	the	'W'	array,	so	it	is	possible	to	send	arbitrary	binary	UDP
messages	(for	example	OSC)	of	up	to	2048	bytes.	The	'start'	parameter	is	the	index	number	of	byte	0
in	the	W	array	and	the	'size'	parameter	is	the	number	of	bytes	to	send.	'hostname'	and	'port'	are	the
UDP	destination	credentials.

IF LOAD
 # setup two OSC messages in W array
 ASS W00 = 4F 53 43 00 # 'OSC'
 ASS W10 = 41 42 43 00 # 'ABC'

 # you can use variables for start, size and port
 # this example for second 'ABC' message
 ASS I0 = 10 4
 ALIAS I2 PORT
 ASSIGN PORT = $2468
END

send our OSC messages when we see sustain pedal
IF M0 = B0 40 7F
 # send 'OSC' to host1 on port 1234
 SND 0 4 +Uhost1:$1234

 # send 'ABC' to local IP on port 2468
 # using variables I0-2 for credentials
 SND I0 I1 +U192.168.1.1:PORT
END

Tip	-	The	SND	+U	implies	the	+F	flag	is	set.

Assign	(ASS[IGN])

Assign	is	used	to	set	the	value(s)	of	array	variables:

ASS[IGN] <value> = <value> [<value> ...] [+P[RESERVE]]

Like	conditionals,	by	specifying	multiple	values	to	the	right	of	the	'='	is	a	fast	way	of	setting	multiple
values	in	an	array:

ASS L0 = 12 # assign '12' to L0
ASS L0 = 01 02 03 04 # assign 01 to L0, 02 to L1,
 # 03 to L2, 04 to L3
ASS G0 = M0 # assign value in M0 to G0
ASS GL0 = 12 # assign '12' to array G indexed
 # by value of L0
ASSIGN K0 = 00 +P # assign 0 to K0, the value of K0
 # is preserved

The	'+P'	flag	indicates	that	the	array	values	being	assigned	to	should	be	preserved	in	the	scene	or
between	app	invocations.	When	the	scene	is	loaded	or	the	app	is	restarted,	the	preserved	value	will
be	restored	into	the	array	value.	You	may	only	specify	the	+P	flag	where	you	are	assigning	to	the
global	or	local	arrays	directly.

Maths	(MAT[H]|CAL[C])

MAT	commands	are	a	single	assign	but	with	two	operands	and	a	mathematical	operator:

MAT[H] <variable> = <value> <operator> <value>

operators	are:

+, -, *, /, &, |, ^ and %

MAT L0 = L0 + 1 # increment L0 by 1
MAT G0 = L3 % L4 # assign value of L3 modulo value of L4
 # to variable G0

Tip	-	You	can	use	MATH	or	CALC	keywords;	they	are	the	same	as	MAT

Debugging	Log	(LOG)

When	writing	StreamByter	code,	it	can	be	helpful	to	log	what	is	happening	in	your	script	using	the
LOG	rule:

LOG <string> [<value> [+D|+N]]

Where	the	mandatory	one	word	string	is	a	string	of	your	choice	(use	underscores	in	the	string	to	get
spaces	in	the	log	entry).
Value	is	optional	and	can	be	a	literal	or	variable.
Use	the	+D	(decimal)	or	+N	(note)	flag	to	display	the	value	as	decimal	or	note.

log when script is loaded
if load
 log Script_Loaded
end

log each note on received
if MT == 90
 LOG Note_on M1 +Note
 LOG Note_Velocity M2 +Decimal
end

So,	how	do	you	actually	see	the	log	results?	Connect	an	Event	Monitor	immediately	after	the	Stream
Byter	and	the	log	entries	will	show	up	in	that	monitor.	Each	log	entry	is	timestamped	with	that	of	the
MIDI	event	that	was	being	processed	when	the	LOG	rule	was	reached	(or	the	current	time	if	inside	an
IF/LOAD).

Set	label	(SET)

You	can	set	the	value	of	the	two	'info'	labels	on	the	Stream	Byter	block	using	a	SET	rule:

SET [LB0|LB1] <value|S<string>> [+D[ECIMAL]] [+N[OTE]]

Where	LB0	is	the	left	label	and	LB1	is	the	right	label.
Value	is	as	defined	above	(literal	or	variable)
You	can	set	the	label	to	an	arbitrary	string	by	prefixing	with	'S'
The	optional	+D	flag	means	display	the	value	in	decimal	(default	is	hex)
The	optional	+N	flag	means	display	the	value	as	a	note	name

set left block label to the hex 32
SET LB0 32

set right block label to the value stored in byte 3 of the current message
SET LB1 M02 +D

set left block label to the string 'on'
SET LB0 Son

set right block label to name of incoming note
IF M00 >= 90
 IF M00 <= 9F
 IF M02 > 00
 SET LB1 M01 +N
 END
 END
END

Introduced	in	version	2.0	are	some	extra	things	that	can	be	set	from	a	script:

NVR	-	with	version	2.0	onwards,	note	events	with	a	velocity	value	of	0	are	automatically	converted	to
note	off	events	before	being	passed	the	the	script.	This	saves	you	from	the	dreaded	9X	XX	00	=	8X
incantation.	However,	if	you	do	not	like	that	behaviour	you	can	set	the	NVR	flag	to	0	and	keep	it	the
way	it	was.

SET NVR <0|1>

NAME	-	you	can	give	your	script	a	name	and	that	name	will	be	shown	as	the	block	name.	This	can	be
set	dynamically.

SET NAM[E] <yourname>

FLUSH	-	setting	this	to	1	will	flush	all	pending	(advanced	scheduled)	MIDI	events.

SET FLU[SH] 1

Macros	and	Subroutines

Version	2.0	introduces	two	new	code	features;	DEFINE	and	SUBROUTINE
The	DEFINE	rule	lets	you	give	any	sequence	of	code	tokens	a	name	and	then	use	that	name	further	in
the	code	instead	of	typing	in	the	original	text.	This	is	similar	to	a	#define	in	C	but	no	parameters.	Like
the	C	version,	you	can	have	DEFINES	that	refer	to	previous	DEFINES.

DEF[INE] <name> <some code>

It	is	essentially	a	find/replace.	Best	explained	by	example:

IF LOAD
 DEFINE MSG0 M0
 DEFINE CHAN_VOLUME B0 07
 DEFINE CHAN_VOLUME_MIN MSG0 == CHAN_VOLUME 00
END

IF CHAN_VOLUME_MIN
END

The	SUBROUTINE	rule	allows	you	to	create	code	subroutines	(with	arguments)	that	you	can	call	from
elsewhere	in	your	code.

SUB[ROUTINE] <name> [<args>]
 ... lines of code ...
END

courtesy of Millie Jackson
IF LOAD
 SUBROUTINE MUFFLE ARG1 ARG2
 IF ARG1 >= 40
 SEND B0 ARG1 ARG2
 END
 END

 ALIAS L0 THAT
 ALIAS L1 FART
END

IF MT == 90
 MUFFLE THAT FART
END

Arguments	can	be	any	string	you	like.	Note	that	arguments	are	passed	to	the	subroutine	via
reference,	so	for	example:

SUBROUTINE ZAP VARIABLE
 ASS VARIABLE = 0
END

ZAP I0 # will set I0 to 0

It	is	possible	for	a	subroutine	to	call	itself	(recursion),	but	to	prevent	infinite	recusion,	the	maximum
recursion	level	is	256	calls.
When	a	subroutine	is	called	and	any	of	its	arguments	were	not	passed	by	the	caller,	those	missing
arguments	will	have	a	literal	value	of	0.
As	well	as	the	argument	strings	set	in	the	SUB	rule,	the	arguments	are	also	available	using	the	'Z'
array	and	the	number	of	arguments	passed	is	in	the	special	variable	'ZN'	(number	of	args).	This
means	a	subroutine	can	determine	the	number	of	arguments	and	cycle	through	them	like	this:

IF LOAD
 SUB FOO ARG1 ARG2
 # send a CC with each passed arg as
 # CC value
 ASS I0 = 0
 WHILE I0 < ZN
 SND B0 01 ZI0
 MAT I0 = I0 + 1
 END

 # note, Z0 will be the same as ARG1,
 # and Z1 is the same as ARG2
 SET LB0 ARG1 +D
 SET LB1 ARG2 +D
 END
END

Tip	-	It	is	suggested	for	efficiency	that	all	ALIAS,	DEFINE	and	SUBROUTINE	rules	be	inside	an
IF/LOAD,	but	that	it	not	mandatory.

Send	Keystroke	(KEY)	(mac	only)

The	KEY	rule	allows	you	to	send	a	single	keystroke	to	the	currently	focussed	application	from	your
script.	Think	converting	MIDI	events	to	qwerty	keystrokes.

KEY <N|S|C|A|O> <keysym>

Where	the	first	parameter	denotes	the	key	modifier	and	can	be	NORMAL,	SHIFT,	CONTROL,	ALT	or
OPTION.
The	second	parameter	is	the	mac	'keysym'	to	be	sent.	This	is	a	number	and	depends	upon	your
keyboard	layout.	Search	the	web	to	find	tables	of	keysyms	for	your	keyboard	layout.

IF M0 == B0 12 42
 # send 'q' key to current application
 KEY NORMAL $12
END

Advanced	Examples

Finally,	here	are	some	examples	of	more	advanced	ways	of	using	the	Stream	Byter

controller value remap table
IF LOAD
 ASS L00 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L10 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L20 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L30 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L40 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L50 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L60 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L70 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
END
remap value of CH1/CC7
IF M0 == B0 07
 ASS M2 = LM2
END

when loaded play C3 3 times (looping)
IF LOAD
 ASS L0 = 2
 SND 90 3C 40 +I
 SND 80 3C 00 +D500 +I
END
IF M0 == 90
 IF L0 > 0
 SND 90 3C 40 +I +D1000
 SND 80 3C 00 +I +D1500
 END
 IF L0 != 0
 MAT L0 = L0 - 1
 END
END

5a.	'Niche'	Modules top
We	have	included	a	few	specific	purpose	modules	based	on	our	own	ideas	and	work	we	have	done
for	other	customers.	These	may	be	useful	to	others.

Tracking	Clamp modules

The	Tracking	Clamp	module	is	designed	to	reduce	the	artefacts	of	MIDI	guitar	signals	(ie.	miss-hits).	It
does	this	in	two	ways:

Velocity	Compression

The	clamp	monitors	the	incoming	MIDI	signal	and	compresses	outlying	velocity	values	based	on
previous	notes.	This	makes	your	note	volumes	smoother	and	miss-hit	notes	will	not	stand	out	so
greatly.

Artefact	Removal
The	clamp	monitors	the	incoming	MIDI	signal	and	blocks	notes	that	are	a	long	way	from	the
previous	notes	that	were	played.	This	reduces	the	incidence	of	'harmonic'	miss-hits.

You	can	set	the	clamp	to	perform	both	velocity	compression	and	artefact	removal.
Adjusting	the	'degree'	parameter	changes	how	many	notes	are	examined	to	establish	the	'norm'	and
for	how	long	the	norm	is	held	in	place.	Best	way	to	adjust	this	is	with	trial	and	error	as	playing	styles
vary.
Tip	-	when	using	a	MIDI	guitar	and	the	Robotic	Knob	put	a	clamp	before	the	Robotic	Knob	to
tame	the	signal.

Robotic	Knob modules

The	Robotic	Knob	module	monitors	your	playing	and	generates	complementary	CC	messages	that
can	be	fed	forward	to	apps	or	outboard	FX	to	control	sound	parameters.	The	Knob	can	react	to	note
velocity,	keyboard	position,	MIDI	guitar	fretboard	position	(eg.	Fishman	Triple	Play)	and	pitchbend.
The	types	of	things	you	can	do	with	this	module	are	up	to	your	imagination!	You	could	cross	fade
between	sounds	as	you	move	up/down	the	keyboard/fretboard,	open	up	a	delay	(and	close)	as	you
pitchbend	up	or	increase	chorus	the	softer	you	play.	It's	like	having	a	roadie	with	unlimited	fingers
automatically	adjusting	knobs	on	your	gear	based	on	your	playing.
Tip	-	you	can	have	loads	of	Robotic	Knobs	all	monitoring	different	aspects	of	your	playing	and
adjusting	in	real	time	for	some	very	crazy	control	of	your	sound.

Parameters:

trigger	type	(default:	Note	On	Velocity)
The	trigger	type	parameter	tells	the	Robotic	Knob	what	type	of	event	you	wish	to	have
monitored.	The	possible	values	are:

Note	On	Velocity
The	Knob	will	generate	CC	messages	based	upon	how	hard	you	play	notes.

Keyboard	Position
The	Knob	will	generate	CC	messages	based	upon	where	in	the	MIDI	keyboard	range	you
are	currently	playing	(from	low	to	high).

FTP	Fretboard	Position
For	owners	of	a	Fishman	Triple	Play	unit,	this	generates	CC	messages	based	upon	which
fret	you	are	currently	playing	(from	0	to	24).

Pitch	Bend
This	generates	CC	messages	based	on	pitch	bend	information	coming	from	your	controller
(from	-64	to	+64)

trigger	from,	to	(default:	depends	upon	type)
This	parameter	specifies	the	trigger	event	range	that	you	wish	the	Knob	to	react	to.	Only	when
incoming	events	are	within	that	range	will	CCs	be	generated.

delta	limit	(default:	none)

This	parameter	allows	you	to	set	a	maximum	limit	within	which	CCs	will	be	issued.	If	the	current
trigger	event	is	'delta	limit'	greater	than	the	previous	trigger	event,	then	no	complementary	CC
is	generated.	You	can	use	this	parameter	to	prevent	sudden	CC	changes	when	you	move	a	large
distance	on	the	fret	or	keyboard.

oob	clamp	(default:	Both)
This	parameter	determines	what	will	happen	if	a	trigger	event	is	outside	of	the	from,	to	range.	If
the	oob	(out	of	bounds)	clamp	is	full,	then	events	outside	of	the	range	will	trigger	the	minimum
or	maximum	CC	to	be	sent.	If	set	to	None,	then	no	CC	is	sent	if	the	trigger	is	out	of	range.	If	set
to	Lower	then	the	minimum	value	is	sent	if	the	trigger	is	less	than	minimum.	If	set	to	Upper	then
the	maximum	value	is	sent	if	less	than	maximum.

output	CC,	channel	(default:	CC7,	channel	1)
Use	these	two	parameters	to	set	the	CC	number	and	channel	of	the	complementary	CCs	that
will	be	issued.

initial	CC	value	(default:	none)
You	can	set	the	initial	CC	value	that	you	want	sent	when	the	module	is	loaded.	ie.	set	the	initial
CC	value	on	load.

output	from,	to	(default:	0	-	127)
This	sets	the	range	of	the	value	byte	of	the	complementary	CCs.	The	Knob	will	scale	the	input
event	(based	on	trigger	from,	to)	to	this	range.

output	smoothing	(default:	None)
As	complementary	CCs	are	generated	you	can	generate	'inbetween'	CCs	as	the	CC	value
moves	from	one	value	to	another	to	make	smooth	graduations	in	change.

smoothing	speed	(default:	Immediate)
If	output	smoothing	is	enabled	then	you	can	specify	how	quickly	the	inbetween	CCs	are	issued
during	the	smoothing	process.	With	this	you	can	control	how	slowly	or	quickly	the
complementary	CCs	ramp	up	or	down.

OSC	Exchange modules
The	OSC	Exchange	accepts	OSC	data,	packages	it	up	into	MIDI	sysex	and	then	transmits	over	a	MIDI
channel	to	another	MidiFire	instance	which	then	unpacks	and	forwards	on	the	OSC	messages	at	the
other	end.
Use	this	module	to	link	OSC	apps/gear	over	a	wifi,	bluetooth,	DIN	cable	or	USB	MIDI	connection	(eg.
musicIO).

Parameters:

udp	send	port	(default:	0)
Packaged	OSC	data	received	by	the	module	is	sent	out	on	this	UDP	port.	If	the	value	is	0,	then
nothing	is	sent.

udp	receive	port	(default:	0)
The	module	will	listen	to	OSC	packets	coming	from	this	udp	port	and	then	package	off	and	send
the	OSC	data	in	sysex	packets	out	of	the	module	for	forwarding	elsewhere.	If	the	value	is	0,	then
the	module	will	not	be	listening.

max	MIDI	rate	(default:	8000	bytes/s)
In	some	circumstances	you	may	need	to	limit	the	bandwidth	used	in	sending	the	OSC	data.
Specify	a	value	here	if	packets	are	getting	lost,	or	set	it	to	0	for	no	rate	limiting	at	all.

wrap	data	in	sysex	(default:	yes)
OSC	and	other	non	MIDI	data	is	generally	wrapped	in	a	sysex	message	to	pass	on	to	another
MidiFire	instance	over	a	MIDI	link.	If,	however,	the	data	you	are	sending/receiving	over	UDP	is
just	ordinary	MIDI	(say	you	want	to	give	a	scripting	language	MIDI	in/out	via	UDP),	then	you
would	turn	off	this	option.

In	Conclusion top
You've	made	it	to	the	bottom	of	what	has	turned	out	to	be	a	very	long	and	in-depth	manual!	If	you're
still	having	problems	or	just	have	questions,	please	do	contact	us	at	apps@audeonic.com	or	join	us
on	the	Audeonic	Soapbox	(forum)	at	http://soapbox.audeonic.com
As	a	parting	note,	we	hope	you	find	MidiFire	useful	and	would	like	to	thank	you	for	downloading	it.
We	would	really	appreciate	it	if	you	could	take	a	little	bit	of	time	and	rate	and	review	MidiFire	on	the
App	Store	to	assist	others	who	may	be	considering	downloading	the	app	and	of	course	(hopefully)
augmenting	the	development	team's	egos.
Tip	-	HTML	was	authored	by	hand	in	Dublin,	Ireland
--	end

